Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1370: 155-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36971967

RESUMO

Several infections, such as pneumonia, urinary tract infections (UTIs), as well as bloodstream, skin, and soft tissue infections, are caused by Acinetobacter baumannii, a nosocomial pathogen and Gram-negative coccobacillus. Due to its resistance to a variety of medications, multidrug therapy, and occasionally pan therapies, this bacterium is a huge public health concern. Drug resistance is a big worry not only in A. baumannii, but it is also a major challenge in many other diseases. Antibiotic resistance, biofilm development, and genetic alterations are all linked to variables like the efflux pump. Efflux pumps are transport proteins involved in the extrusion of hazardous substrates from within cells into the external environment (including nearly all types of therapeutically relevant antibiotics). Both Gram-positive and Gram-negative bacteria, as well as eukaryotic organisms, contain these proteins. Efflux pumps may be specialized for a single substrate or can transport a variety of structurally dissimilar molecules (including antibiotics of many classes); these pumps have been linked to multiple drug resistance (MDR). There are five primary families of efflux transporters in the prokaryotic kingdom: MF (major facilitator), MATE (multidrug and toxic efflux), RND (resistance-nodulation-division), SMR (small multidrug resistance), and ABC (ATP-binding cassette). The efflux pumps and their types as well as the mechanisms of an efflux pump involved in multidrug resistance in bacteria have been discussed here. The main focus is on the variety of efflux pumps commonly found in A. baumannii, along with their mechanism by which they make this bacteria drug resistant. The efflux-pump-inhibitor-based strategies that are significant in targeting efflux pumps in A. baumannii have also been discussed. The connection of biofilm and bacteriophage with the efflux pump can prove as an efficient strategy for targeting efflux-pump-based resistance in A. baumannii.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Quimioterapia Combinada , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas/metabolismo , Hansenostáticos/metabolismo , Farmacorresistência Bacteriana Múltipla/genética
3.
Curr Opin Infect Dis ; 30(3): 309-315, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28134679

RESUMO

PURPOSE OF REVIEW: We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS: DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY: Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.


Assuntos
Bactérias/patogenicidade , Epigênese Genética , Regulação Bacteriana da Expressão Gênica/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/patogenicidade , Bactérias/enzimologia , Metilação de DNA , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium leprae/enzimologia , Mycobacterium leprae/patogenicidade , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Mycoplasma hyorhinis/enzimologia , Mycoplasma hyorhinis/patogenicidade , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/patogenicidade , Células de Schwann/metabolismo , Células de Schwann/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA